👁️ Give Your AI Super Vision!
Your AI can chat, create images, understand speech, analyze files, and talk back. Now let’s give it eyes! 👀
Imagine users uploading a business chart and your AI saying: “This shows a 23% increase in Q3 sales, with the highest growth in the mobile segment.” Or analyzing a screenshot and providing detailed UI/UX feedback!
What we’re building: Your AI will become a visual expert that can analyze photos, documents, charts, screenshots - anything visual - with professional-level insights!
🎯 From Blind AI to Visual Genius
Section titled “🎯 From Blind AI to Visual Genius”Current state: Your AI can process text, but images are a mystery Target state: Your AI sees and understands any visual content!
🔄 The Visual Intelligence Transformation
Section titled “🔄 The Visual Intelligence Transformation”Before (Blind AI):
User: [Uploads business chart] "What does this show?"AI: "I can't see images, please describe it" 😕After (AI with Vision):
User: [Uploads business chart] "What does this show?"AI: "This bar chart shows quarterly revenue growth, with Q3 showing a 34% increase over Q2. The mobile division is your strongest performer with $2.3M in sales." 🤩The magic: Your AI becomes a visual expert that understands images like a human!
🚀 Why Vision Makes Your App Incredible
Section titled “🚀 Why Vision Makes Your App Incredible”Real-world scenarios your AI will handle:
- 📈 Business charts - “Revenue increased 23% with mobile leading growth”
- 📝 Documents - Extract key data, dates, and important information
- 📱 Screenshots - “The login button should be bigger and more prominent”
- 🎨 Photos - “This shows a golden retriever in a park with 3 people”
- 📊 Dashboards - “Your conversion rate dropped 5% but user engagement is up”
Without vision AI:
❌ Manually examine every image❌ Miss important visual patterns❌ Time-consuming data extraction❌ Limited to text-only analysisWith vision AI:
✅ Instant professional image analysis✅ Extract data with perfect accuracy✅ Spot patterns humans might miss✅ Complete multimedia intelligence🕰️ Your AI’s New Visual Superpowers
Section titled “🕰️ Your AI’s New Visual Superpowers”📄 Document Detective Mode
Perfect for: Invoices, contracts, forms, reportsAI becomes: Professional document analystResults: "Invoice #12345 dated March 15th for $2,847.50 from TechCorp"📊 Chart Analyst Mode
Perfect for: Graphs, dashboards, data visualizationsAI becomes: Business intelligence expertResults: "Sales peaked in Q3 at $1.2M, showing 45% growth over Q2"🎯 Everything Mode
Perfect for: Photos, screenshots, anything visualAI becomes: Universal visual expertResults: "This UI mockup has good spacing but the CTA button needs more contrast"The best part: One AI handles all types perfectly!
🛠️ Step 1: Add Super Vision to Your Backend
Section titled “🛠️ Step 1: Add Super Vision to Your Backend”Great news: We’re using your proven Response API patterns!
What you already know:
// Your familiar text analysisconst response = await client.responses.create({ model: "gpt-4o", input: [expertPrompt, userMessage]});What we’re adding:
// Same pattern + image input!const response = await client.responses.create({ model: "gpt-4o", // Same model, now with vision! input: [ expertPrompt, { role: "user", content: [ { type: "text", text: "Analyze this image" }, { type: "image_url", image_url: uploadedImage } ] } ]});Perfect! Same Response API, just with image superpowers added.
🧠 Understanding Vision Analysis Flow
Section titled “🧠 Understanding Vision Analysis Flow”Simple concept: Image goes in → Expert analysis comes out!
// What we need to track:const visionState = { uploadedImage: "user-screenshot.png", // What to analyze analysisMode: "general", // How to analyze it visionSettings: { // Analysis options includeOCR: true, // Extract text extractData: true, // Find numbers/dates detailLevel: "high" // Depth of analysis }, aiResults: "Professional analysis...", // Expert insights!}Vision analysis types:
- 📝 Document mode - Focus on text extraction and data
- 📊 Chart mode - Analyze data visualizations and trends
- 🎯 General mode - Comprehensive understanding of anything
- 🔍 Detail levels - From quick summaries to deep analysis
Step 2: Quick Setup (30 seconds)
Section titled “Step 2: Quick Setup (30 seconds)”Add one package for image optimization:
# In your backend foldernpm install sharpWhat sharp does: Makes images perfect for AI analysis - faster processing and better results!
Step 3: Add the Vision Analysis Route
Section titled “Step 3: Add the Vision Analysis Route”Add this to your server - same reliable patterns:
import sharp from 'sharp';
// 👁️ VISION ANALYSIS ENDPOINT: Add this to your existing serverapp.post("/api/vision/analyze", upload.single("image"), async (req, res) => { try { // 🛡️ VALIDATION: Check if image was uploaded const uploadedImage = req.file; const { analysisType = "general", includeOCR = true, extractData = true } = req.body;
if (!uploadedImage) { return res.status(400).json({ error: "Image file is required", success: false }); }
console.log(`👁️ Analyzing: ${uploadedImage.originalname} (${uploadedImage.size} bytes)`);
// 🖼️ IMAGE OPTIMIZATION: Prepare image for vision analysis const optimizedImage = await optimizeImageForVision(uploadedImage.buffer); const base64Image = optimizedImage.toString('base64'); const imageUrl = `data:${uploadedImage.mimetype};base64,${base64Image}`;
// 🔍 ANALYSIS PROMPT: Generate appropriate prompt based on type const analysisPrompt = generateVisionPrompt(analysisType, includeOCR, extractData);
// 🤖 AI VISION ANALYSIS: Process with GPT-4o const response = await openai.responses.create({ model: "gpt-4o", input: [ { role: "system", content: analysisPrompt.systemPrompt }, { role: "user", content: [ { type: "text", text: analysisPrompt.userPrompt }, { type: "image_url", image_url: { url: imageUrl, detail: "high" } } ] } ] });
// 📤 SUCCESS RESPONSE: Send analysis results res.json({ success: true, file_info: { name: uploadedImage.originalname, size: uploadedImage.size, type: uploadedImage.mimetype }, analysis: { type: analysisType, include_ocr: includeOCR, extract_data: extractData, result: response.output_text, model: "gpt-4o" }, timestamp: new Date().toISOString() });
} catch (error) { // 🚨 ERROR HANDLING: Handle analysis failures console.error("Vision analysis error:", error);
res.status(500).json({ error: "Failed to analyze image", details: error.message, success: false }); }});
// 🔧 HELPER FUNCTIONS: Vision analysis utilities
// Optimize image for better vision analysisconst optimizeImageForVision = async (imageBuffer) => { try { // Resize large images for better processing const optimized = await sharp(imageBuffer) .resize(2048, 2048, { fit: 'inside', withoutEnlargement: true }) .jpeg({ quality: 85 }) .toBuffer();
return optimized; } catch (error) { console.error('Image optimization error:', error); return imageBuffer; // Return original if optimization fails }};
// Generate analysis prompts based on typeconst generateVisionPrompt = (analysisType, includeOCR, extractData) => { const baseSystem = "You are a professional visual analyst with expertise in document analysis, data extraction, and image understanding.";
switch (analysisType) { case 'document': return { systemPrompt: `${baseSystem} You specialize in document analysis, OCR, and text extraction.`, userPrompt: `Analyze this document image with focus on: 1. TEXT EXTRACTION: ${includeOCR ? 'Extract all readable text content using OCR' : 'Summarize visible text content'} 2. DOCUMENT STRUCTURE: Identify document type, layout, and organization 3. KEY DATA: Extract important numbers, dates, names, and values 4. INSIGHTS: Provide analysis of the document's purpose and key information
Provide clear, structured analysis that's easy to understand.` };
case 'chart': return { systemPrompt: `${baseSystem} You specialize in chart analysis, data visualization interpretation, and trend analysis.`, userPrompt: `Analyze this chart/graph with focus on: 1. CHART TYPE: Identify the type of visualization (bar, line, pie, etc.) 2. DATA EXTRACTION: ${extractData ? 'Extract specific numerical values and data points' : 'Summarize key trends and patterns'} 3. TRENDS: Identify patterns, trends, and significant changes 4. INSIGHTS: Provide business intelligence and actionable insights
Focus on accuracy and clear interpretation of the visual data.` };
default: // general return { systemPrompt: `${baseSystem} You provide comprehensive visual analysis for any type of image.`, userPrompt: `Analyze this image comprehensively: 1. CONTENT DESCRIPTION: What do you see in this image? 2. KEY ELEMENTS: Important objects, text, or data visible 3. CONTEXT ANALYSIS: Purpose, setting, or business context 4. ACTIONABLE INSIGHTS: Useful observations or recommendations
${includeOCR ? 'Include any readable text content.' : ''} ${extractData ? 'Extract any numerical or structured data visible.' : ''}
Provide practical, useful analysis that helps users understand the image better.` }; }};Function breakdown:
- Validation - Ensure we have an image to analyze
- Image optimization - Prepare image for better AI analysis
- Prompt generation - Create appropriate analysis prompts
- Vision analysis - Process with GPT-4o vision capabilities
- Response formatting - Return structured results with metadata
Step 2D: Updating File Upload Configuration
Section titled “Step 2D: Updating File Upload Configuration”Update your existing multer configuration to handle images:
// Update your existing multer setup to handle imagesconst upload = multer({ storage: multer.memoryStorage(), limits: { fileSize: 25 * 1024 * 1024 // 25MB limit }, fileFilter: (req, file, cb) => { // Accept all previous file types PLUS images const allowedTypes = [ 'application/pdf', 'application/vnd.openxmlformats-officedocument.wordprocessingml.document', 'application/vnd.openxmlformats-officedocument.spreadsheetml.sheet', 'text/plain', 'text/csv', 'application/json', 'text/javascript', 'text/x-python', 'audio/wav', 'audio/mp3', 'audio/mpeg', 'audio/mp4', 'audio/webm', 'image/jpeg', // Add image support 'image/png', // Add image support 'image/webp', // Add image support 'image/gif' // Add image support ];
const extension = path.extname(file.originalname).toLowerCase(); const allowedExtensions = ['.pdf', '.docx', '.xlsx', '.csv', '.txt', '.md', '.json', '.js', '.py', '.wav', '.mp3', '.jpeg', '.jpg', '.png', '.webp', '.gif'];
if (allowedTypes.includes(file.mimetype) || allowedExtensions.includes(extension)) { cb(null, true); } else { cb(new Error('Unsupported file type'), false); } }});Your backend now supports:
- Text chat (existing functionality)
- Streaming chat (existing functionality)
- Image generation (existing functionality)
- Audio transcription (existing functionality)
- File analysis (existing functionality)
- Text-to-speech (existing functionality)
- Vision analysis (new functionality)
🔧 Step 3: Building the React Vision Component
Section titled “🔧 Step 3: Building the React Vision Component”Now let’s create a React component for vision analysis using the same patterns from your existing components.
Step 3A: Creating the Vision Analysis Component
Section titled “Step 3A: Creating the Vision Analysis Component”Create a new file src/VisionAnalysis.jsx:
import { useState, useRef } from "react";import { Upload, Eye, FileText, BarChart3, Download, Camera } from "lucide-react";
function VisionAnalysis() { // 🧠 STATE: Vision analysis data management const [selectedImage, setSelectedImage] = useState(null); // Uploaded image const [analysisType, setAnalysisType] = useState("general"); // Analysis mode const [isAnalyzing, setIsAnalyzing] = useState(false); // Processing status const [analysisResult, setAnalysisResult] = useState(null); // Analysis results const [error, setError] = useState(null); // Error messages const [previewUrl, setPreviewUrl] = useState(null); // Image preview const [options, setOptions] = useState({ // Analysis options includeOCR: true, extractData: true }); const fileInputRef = useRef(null);
// 🔧 FUNCTIONS: Vision analysis logic engine
// Handle image selection const handleImageSelect = (event) => { const file = event.target.files[0]; if (file) { // Validate file size (25MB limit) if (file.size > 25 * 1024 * 1024) { setError('Image too large. Maximum size is 25MB.'); return; }
// Validate file type const allowedTypes = ['image/jpeg', 'image/png', 'image/webp', 'image/gif']; if (!allowedTypes.includes(file.type)) { setError('Unsupported image type. Please upload JPEG, PNG, WebP, or GIF files.'); return; }
setSelectedImage(file); setAnalysisResult(null); setError(null);
// Create preview URL const url = URL.createObjectURL(file); setPreviewUrl(url); } };
// Clear selected image const clearImage = () => { setSelectedImage(null); setAnalysisResult(null); setError(null); if (previewUrl) { URL.revokeObjectURL(previewUrl); setPreviewUrl(null); } if (fileInputRef.current) { fileInputRef.current.value = ''; } };
// Main vision analysis function const analyzeImage = async () => { // 🛡️ GUARDS: Prevent invalid analysis if (!selectedImage || isAnalyzing) return;
// 🔄 SETUP: Prepare for analysis setIsAnalyzing(true); setError(null); setAnalysisResult(null);
try { // 📤 FORM DATA: Prepare multipart form data const formData = new FormData(); formData.append('image', selectedImage); formData.append('analysisType', analysisType); formData.append('includeOCR', options.includeOCR); formData.append('extractData', options.extractData);
// 📡 API CALL: Send to your backend const response = await fetch("http://localhost:8000/api/vision/analyze", { method: "POST", body: formData });
const data = await response.json();
if (!response.ok) { throw new Error(data.error || 'Failed to analyze image'); }
// ✅ SUCCESS: Store analysis results setAnalysisResult(data);
} catch (error) { // 🚨 ERROR HANDLING: Show user-friendly message console.error('Vision analysis failed:', error); setError(error.message || 'Something went wrong while analyzing the image'); } finally { // 🧹 CLEANUP: Reset processing state setIsAnalyzing(false); } };
// Download analysis results const downloadAnalysis = () => { if (!analysisResult) return;
const element = document.createElement('a'); const file = new Blob([JSON.stringify(analysisResult, null, 2)], { type: 'application/json' }); element.href = URL.createObjectURL(file); element.download = `vision-analysis-${selectedImage.name}-${Date.now()}.json`; document.body.appendChild(element); element.click(); document.body.removeChild(element); };
// Analysis type options const analysisTypes = [ { value: "general", label: "General Analysis", desc: "Comprehensive visual understanding", icon: Eye }, { value: "document", label: "Document Analysis", desc: "OCR and text extraction focus", icon: FileText }, { value: "chart", label: "Chart Analysis", desc: "Data visualization interpretation", icon: BarChart3 } ];
// Format file size const formatFileSize = (bytes) => { if (bytes === 0) return '0 Bytes'; const k = 1024; const sizes = ['Bytes', 'KB', 'MB']; const i = Math.floor(Math.log(bytes) / Math.log(k)); return parseFloat((bytes / Math.pow(k, i)).toFixed(2)) + ' ' + sizes[i]; };
// 🎨 UI: Interface components return ( <div className="min-h-screen bg-gradient-to-br from-indigo-50 to-purple-50 flex items-center justify-center p-4"> <div className="bg-white rounded-2xl shadow-2xl w-full max-w-6xl flex flex-col overflow-hidden">
{/* Header */} <div className="bg-gradient-to-r from-indigo-600 to-purple-600 text-white p-6"> <div className="flex items-center space-x-3"> <div className="w-10 h-10 bg-white bg-opacity-20 rounded-full flex items-center justify-center"> <Eye className="w-5 h-5" /> </div> <div> <h1 className="text-xl font-bold">👁️ AI Vision Analysis</h1> <p className="text-indigo-100 text-sm">Analyze any image with AI intelligence!</p> </div> </div> </div>
{/* Analysis Type Selection */} <div className="p-6 border-b border-gray-200"> <h3 className="font-semibold text-gray-900 mb-4 flex items-center"> <Camera className="w-5 h-5 mr-2 text-indigo-600" /> Analysis Type </h3>
<div className="grid grid-cols-1 md:grid-cols-3 gap-4"> {analysisTypes.map((type) => { const IconComponent = type.icon; return ( <button key={type.value} onClick={() => setAnalysisType(type.value)} className={`p-4 rounded-lg border-2 text-left transition-all duration-200 ${ analysisType === type.value ? 'border-indigo-500 bg-indigo-50 shadow-md' : 'border-gray-200 hover:border-indigo-300 hover:bg-indigo-50' }`} > <div className="flex items-center mb-2"> <IconComponent className="w-5 h-5 mr-2 text-indigo-600" /> <h4 className="font-medium text-gray-900">{type.label}</h4> </div> <p className="text-sm text-gray-600">{type.desc}</p> </button> ); })} </div> </div>
{/* Analysis Options */} <div className="p-6 border-b border-gray-200"> <h3 className="font-semibold text-gray-900 mb-4">Analysis Options</h3>
<div className="grid grid-cols-1 md:grid-cols-2 gap-4"> <label className="flex items-center space-x-3 p-3 rounded-lg border border-gray-200 hover:bg-gray-50 cursor-pointer"> <input type="checkbox" checked={options.includeOCR} onChange={(e) => setOptions(prev => ({ ...prev, includeOCR: e.target.checked }))} className="w-4 h-4 text-indigo-600 rounded focus:ring-indigo-500" /> <div> <span className="font-medium text-gray-900">Include OCR</span> <p className="text-sm text-gray-600">Extract text content from images</p> </div> </label>
<label className="flex items-center space-x-3 p-3 rounded-lg border border-gray-200 hover:bg-gray-50 cursor-pointer"> <input type="checkbox" checked={options.extractData} onChange={(e) => setOptions(prev => ({ ...prev, extractData: e.target.checked }))} className="w-4 h-4 text-indigo-600 rounded focus:ring-indigo-500" /> <div> <span className="font-medium text-gray-900">Extract Data</span> <p className="text-sm text-gray-600">Find numerical data and structured information</p> </div> </label> </div> </div>
{/* Image Upload Section */} <div className="p-6 border-b border-gray-200"> <h3 className="font-semibold text-gray-900 mb-4 flex items-center"> <Upload className="w-5 h-5 mr-2 text-indigo-600" /> Upload Image for Analysis </h3>
{!selectedImage ? ( <div onClick={() => fileInputRef.current?.click()} className="border-2 border-dashed border-gray-300 rounded-xl p-8 text-center cursor-pointer hover:border-indigo-400 hover:bg-indigo-50 transition-colors duration-200" > <Upload className="w-12 h-12 text-gray-400 mx-auto mb-4" /> <h4 className="text-lg font-semibold text-gray-700 mb-2">Upload Image</h4> <p className="text-gray-600 mb-4"> Support for JPEG, PNG, WebP, and GIF files up to 25MB </p> <button className="px-6 py-3 bg-gradient-to-r from-indigo-600 to-purple-600 text-white rounded-xl hover:from-indigo-700 hover:to-purple-700 transition-all duration-200 inline-flex items-center space-x-2 shadow-lg"> <Upload className="w-4 h-4" /> <span>Choose Image</span> </button> </div> ) : ( <div className="bg-gray-50 rounded-lg p-4 border border-gray-200"> <div className="grid grid-cols-1 md:grid-cols-2 gap-4"> {/* Image Preview */} <div> <h4 className="font-medium text-gray-900 mb-2">Preview:</h4> <img src={previewUrl} alt={selectedImage.name} className="w-full h-48 object-cover rounded-lg border border-gray-200" /> </div>
{/* Image Info */} <div> <div className="flex items-center justify-between mb-4"> <div> <h4 className="font-medium text-gray-900">{selectedImage.name}</h4> <p className="text-sm text-gray-600">{formatFileSize(selectedImage.size)}</p> </div> <button onClick={clearImage} className="p-2 text-gray-400 hover:text-red-600 transition-colors duration-200" > × </button> </div>
<button onClick={analyzeImage} disabled={isAnalyzing} className="w-full bg-gradient-to-r from-indigo-600 to-purple-600 hover:from-indigo-700 hover:to-purple-700 disabled:from-gray-300 disabled:to-gray-300 text-white px-6 py-3 rounded-lg transition-all duration-200 flex items-center justify-center space-x-2 shadow-lg disabled:shadow-none" > {isAnalyzing ? ( <> <div className="w-4 h-4 border-2 border-white border-t-transparent rounded-full animate-spin"></div> <span>Analyzing...</span> </> ) : ( <> <Eye className="w-4 h-4" /> <span>Analyze Image</span> </> )} </button> </div> </div> </div> )}
<input ref={fileInputRef} type="file" accept="image/jpeg,image/png,image/webp,image/gif" onChange={handleImageSelect} className="hidden" /> </div>
{/* Results Section */} <div className="flex-1 p-6"> {/* Error Display */} {error && ( <div className="bg-red-50 border border-red-200 rounded-lg p-4 mb-4"> <p className="text-red-700"> <strong>Error:</strong> {error} </p> </div> )}
{/* Analysis Results */} {analysisResult ? ( <div className="bg-gray-50 rounded-lg p-4"> <div className="flex items-center justify-between mb-4"> <h4 className="font-semibold text-gray-900">Vision Analysis Results</h4> <button onClick={downloadAnalysis} className="bg-gradient-to-r from-blue-500 to-blue-600 hover:from-blue-600 hover:to-blue-700 text-white px-4 py-2 rounded-lg transition-all duration-200 flex items-center space-x-2" > <Download className="w-4 h-4" /> <span>Download</span> </button> </div>
<div className="space-y-4"> {/* File Information */} <div className="bg-white rounded-lg p-4"> <h5 className="font-medium text-gray-700 mb-2">Image Information:</h5> <div className="grid grid-cols-2 md:grid-cols-4 gap-4 text-sm"> <div> <span className="text-gray-600">Name:</span> <p className="font-medium">{analysisResult.file_info.name}</p> </div> <div> <span className="text-gray-600">Size:</span> <p className="font-medium">{formatFileSize(analysisResult.file_info.size)}</p> </div> <div> <span className="text-gray-600">Type:</span> <p className="font-medium">{analysisResult.file_info.type}</p> </div> <div> <span className="text-gray-600">Analysis:</span> <p className="font-medium capitalize">{analysisResult.analysis.type}</p> </div> </div> </div>
{/* Analysis Content */} <div className="bg-white rounded-lg p-4"> <h5 className="font-medium text-gray-700 mb-2">AI Vision Analysis:</h5> <div className="text-gray-900 leading-relaxed whitespace-pre-wrap max-h-96 overflow-y-auto"> {analysisResult.analysis.result} </div> </div> </div> </div> ) : !isAnalyzing && !error && ( // Welcome State <div className="text-center py-12"> <div className="w-16 h-16 bg-indigo-100 rounded-2xl flex items-center justify-center mx-auto mb-4"> <Eye className="w-8 h-8 text-indigo-600" /> </div> <h3 className="text-lg font-semibold text-gray-700 mb-2"> Ready to Analyze! </h3> <p className="text-gray-600 max-w-md mx-auto"> Upload any image to get AI-powered visual analysis, text extraction, and intelligent insights. </p> </div> )} </div> </div> </div> );}
export default VisionAnalysis;Step 3B: Adding Vision Analysis to Navigation
Section titled “Step 3B: Adding Vision Analysis to Navigation”Update your src/App.jsx to include the new vision analysis component:
import { useState } from "react";import StreamingChat from "./StreamingChat";import ImageGenerator from "./ImageGenerator";import AudioTranscription from "./AudioTranscription";import FileAnalysis from "./FileAnalysis";import TextToSpeech from "./TextToSpeech";import VisionAnalysis from "./VisionAnalysis";import { MessageSquare, Image, Mic, Folder, Volume2, Eye } from "lucide-react";
function App() { // 🧠 STATE: Navigation management const [currentView, setCurrentView] = useState("chat"); // 'chat', 'images', 'audio', 'files', 'speech', or 'vision'
// 🎨 UI: Main app with navigation return ( <div className="min-h-screen bg-gray-100"> {/* Navigation Header */} <nav className="bg-white shadow-sm border-b border-gray-200"> <div className="max-w-6xl mx-auto px-4"> <div className="flex items-center justify-between h-16"> {/* Logo */} <div className="flex items-center space-x-3"> <div className="w-8 h-8 bg-gradient-to-r from-blue-500 to-purple-600 rounded-lg flex items-center justify-center"> <span className="text-white font-bold text-sm">AI</span> </div> <h1 className="text-xl font-bold text-gray-900">OpenAI Mastery</h1> </div>
{/* Navigation Buttons */} <div className="flex space-x-2"> <button onClick={() => setCurrentView("chat")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "chat" ? "bg-blue-100 text-blue-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <MessageSquare className="w-4 h-4" /> <span>Chat</span> </button>
<button onClick={() => setCurrentView("images")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "images" ? "bg-purple-100 text-purple-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <Image className="w-4 h-4" /> <span>Images</span> </button>
<button onClick={() => setCurrentView("audio")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "audio" ? "bg-blue-100 text-blue-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <Mic className="w-4 h-4" /> <span>Audio</span> </button>
<button onClick={() => setCurrentView("files")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "files" ? "bg-green-100 text-green-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <Folder className="w-4 h-4" /> <span>Files</span> </button>
<button onClick={() => setCurrentView("speech")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "speech" ? "bg-orange-100 text-orange-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <Volume2 className="w-4 h-4" /> <span>Speech</span> </button>
<button onClick={() => setCurrentView("vision")} className={`px-4 py-2 rounded-lg flex items-center space-x-2 transition-all duration-200 ${ currentView === "vision" ? "bg-indigo-100 text-indigo-700 shadow-sm" : "text-gray-600 hover:text-gray-900 hover:bg-gray-100" }`} > <Eye className="w-4 h-4" /> <span>Vision</span> </button> </div> </div> </div> </nav>
{/* Main Content */} <main className="h-[calc(100vh-4rem)]"> {currentView === "chat" && <StreamingChat />} {currentView === "images" && <ImageGenerator />} {currentView === "audio" && <AudioTranscription />} {currentView === "files" && <FileAnalysis />} {currentView === "speech" && <TextToSpeech />} {currentView === "vision" && <VisionAnalysis />} </main> </div> );}
export default App;🧪 Testing Your Vision Analysis
Section titled “🧪 Testing Your Vision Analysis”Let’s test your vision analysis feature step by step to make sure everything works correctly.
Step 1: Backend Route Test
Section titled “Step 1: Backend Route Test”First, verify your backend route works by testing it directly:
Test with a simple image:
# Test the endpoint with an image filecurl -X POST http://localhost:8000/api/vision/analyze \ -F "image=@test-image.jpg" \ -F "analysisType=general" \ -F "includeOCR=true" \ -F "extractData=true"Expected response:
{ "success": true, "file_info": { "name": "test-image.jpg", "size": 245678, "type": "image/jpeg" }, "analysis": { "type": "general", "include_ocr": true, "extract_data": true, "result": "This image shows...", "model": "gpt-4o" }, "timestamp": "2024-01-15T10:30:00.000Z"}Step 2: Full Application Test
Section titled “Step 2: Full Application Test”Start both servers:
Backend (in your backend folder):
npm run devFrontend (in your frontend folder):
npm run devTest the complete flow:
- Navigate to Vision → Click the “Vision” tab in navigation
- Select analysis type → Choose “General”, “Document”, or “Chart” analysis
- Configure options → Enable OCR or data extraction as needed
- Upload an image → Try a screenshot, document, or chart
- Analyze → Click “Analyze Image” and see loading state
- View results → See AI analysis with image information
- Download → Test downloading analysis as JSON file
- Switch images → Try different image types and analysis modes
Step 3: Error Handling Test
Section titled “Step 3: Error Handling Test”Test error scenarios:
❌ Large image: Upload image larger than 25MB❌ Wrong type: Upload unsupported file (like .txt or .mp4)❌ Empty upload: Try to analyze without selecting an image❌ Corrupt image: Upload damaged image fileExpected behavior:
- Clear error messages displayed
- No application crashes
- User can try again with different image
- Image upload resets properly after errors
✅ What You Built
Section titled “✅ What You Built”Congratulations! You’ve extended your existing application with complete AI vision analysis:
- ✅ Extended your backend with vision processing and GPT-4o integration
- ✅ Added React vision component following the same patterns as your other features
- ✅ Implemented intelligent image analysis for documents, charts, and general content
- ✅ Created flexible analysis modes with OCR and data extraction options
- ✅ Added download functionality for analysis results
- ✅ Maintained consistent design with your existing application
Your application now has:
- Text chat with streaming responses
- Image generation with DALL-E 3 and GPT-Image-1
- Audio transcription with Whisper voice recognition
- File analysis with intelligent document processing
- Text-to-speech with natural voice synthesis
- Vision analysis with GPT-4o visual intelligence
- Unified navigation between all features
- Professional UI with consistent TailwindCSS styling
Complete OpenAI mastery achieved! You now have a comprehensive application that leverages all major OpenAI capabilities in a unified, professional interface. 👁️
<function_calls>